

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006 in seiner derzeit gültigen Fassung

Seite 1 von 25

SDB-Nr.: 432586

V007.0

überarbeitet am: 03.06.2022

Druckdatum: 12.10.2022

Ersetzt Version vom: 19.10.2018

LOCTITE AA 3298 known as Loctite 3298

ABSCHNITT 1: Bezeichnung des Stoffs bzw. des Gemischs und des Unternehmens

1.1. Produktidentifikator

LOCTITE AA 3298 known as Loctite 3298

1.2. Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von denen abgeraten wird

Vorgesehene Verwendung:

Acrylatklebstoff

1.3. Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt

Henkel AG & Co. KGaA

Henkelstr. 67

40589 Düsseldorf

Deutschland

Tel.: +49 211 797 0

ua-productsafety.de@henkel.com

Aktualisierungen der Sicherheitsdatenblätter können auf unserer Internetseite abgerufen werden https://mysds.henkel.com/index.html#/appSelection oder www.henkel-adhesives.com.

1.4. Notrufnummer

Für Notfälle steht Ihnen die Henkel-Werkfeuerwehr unter der Telefon-Nr. +49-(0)211-797-3350 Tag und Nacht zur Verfügung.

ABSCHNITT 2: Mögliche Gefahren

2.1. Einstufung des Stoffs oder Gemischs

Einstufung (CLP):

Entzündbare Flüssigkeiten Kategorie 2

H225 Flüssigkeit und Dampf leicht entzündbar.

Hautreizend Kategorie 2

H315 Verursacht Hautreizungen.

Schwere Augenschädigung Kategorie 1

H318 Verursacht schwere Augenschäden.

Sensibilisierung der Haut Kategorie 1

H317 Kann allergische Hautreaktionen verursachen.

Spezifische Organ-Toxizität - bei einmaliger Exposition Kategorie 3

H335 Kann die Atemwege reizen.

Zielorgan: Reizung der Atemwege.

Chronische aquatische Toxizität Kategorie 3

H412 Schädlich für Wasserorganismen, mit langfristiger Wirkung.

2.2. Kennzeichnungselemente

Kennzeichnungselemente (CLP):

Gefahrenpiktogramm:

Enthält Methylmethacrylat

Methacrylsäure

Reaktionsprodukt: Bisphenol-A-Epichlorhydrinharze mit durchschnittlichem

Molekulargewicht ≤ 700

1-Methyltrimethylendimethacrylat

Signalwort: Gefahr

Gefahrenhinweis: H225 Flüssigkeit und Dampf leicht entzündbar.

H315 Verursacht Hautreizungen.

H317 Kann allergische Hautreaktionen verursachen.

H318 Verursacht schwere Augenschäden.

H335 Kann die Atemwege reizen.

H412 Schädlich für Wasserorganismen, mit langfristiger Wirkung.

Sicherheitshinweis:

Prävention

P210 Von Hitze, heißen Oberflächen, Funken, offenen Flammen und anderen Zündquellen

fernhalten. Nicht rauchen.

P261 Einatmen von Dampf vermeiden. P273 Freisetzung in die Umwelt vermeiden. P280 Schutzhandschuhe/Augenschutz tragen.

Sicherheitshinweis:

Reaktion

P302+P352 BEI BERÜHRUNG MIT DER HAUT: Mit viel Wasser und Seife waschen. P305+P351+P338 BEI KONTAKT MIT DEN AUGEN: Einige Minuten lang behutsam mit Wasser spülen. Eventuell vorhandene Kontaktlinsen nach Möglichkeit entfernen.

Weiter spülen.

P333+P313 Bei Hautreizung oder -ausschlag: Ärztlichen Rat einholen/ärztliche Hilfe

hinzuziehen.

2.3. Sonstige Gefahren

Keine bei bestimmungsgemäßer Verwendung.

Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und sehr Bioakkumulativ (vPvB). Eingestuft als Hautreizend Kat. 2, H315, auf Grund von Experteneinschätzungen und experimenteller Daten eines OECD 431-Tests oder auf Grund von Analogien zu Untersuchungen von ähnlichen Produkten.

Folgende Inhaltsstoffe liegen in einer Konzentration >=0,1% vor und erfüllen die PBT/vPvB-Kriterien, bzw. wurden als endokrine Disruptoren (ED) identifiziert:

Das Gemisch enthält keine Stoffe in Konzentationen ≥ der Konzentrationsgrenzen zur Einstufung als PBT, vPvB oder ED.

ABSCHNITT 3: Zusammensetzung/Angaben zu Bestandteilen

3.2. Gemische

Inhaltsstoffangabe gemäß CLP (EG) Nr 1272/2008:

Gefährliche Inhaltsstoffe CAS-Nr. EG-Nummer REACH-Reg. No.	Konzentration	Einstufung	Spezifische Konzentrationsgrenzwerte (SCL), M-Faktoren und ATE- Werte	Zusätzliche Informationen
Methylmethacrylat 80-62-6 201-297-1 01-2119452498-28	50- 100 %	Flam. Liq. 2, H225 STOT SE 3, H335 Skin Irrit. 2, H315 Skin Sens. 1, H317	STOT SE 3; H335; C >= 10 %	EU OEL
Methacrylsäure 79-41-4 201-204-4 01-2119463884-26	5- < 10 %	Acute Tox. 4, Oral, H302 Acute Tox. 3, Dermal, H311 Acute Tox. 4, Einatmen, H332 Skin Corr. 1A, H314 Eye Dam. 1, H318 STOT SE 3, H335	STOT SE 3; H335; C >= 1 % ===== dermal:ATE = 500 mg/kg inhalation:ATE = 3,61 mg/l;	
[3-(2,3- Epoxypropoxy)propyl]trimethox ysilan 2530-83-8 219-784-2 01-2119513212-58	1-< 3%	Aquatic Chronic 3, H412 Eye Dam. 1, H318		
1- Methyltrimethylendimethacrylat 1189-08-8 214-711-0 01-2119969461-31	0,1-< 1 %	Skin Sens. 1B, H317		
Reaktionsprodukt: Bisphenol-A- Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	0,1-< 1 %	Skin Irrit. 2, H315 Skin Sens. 1, H317 Aquatic Chronic 2, H411 Eye Irrit. 2, H319	Eye Irrit. 2; H319; C >= 5 % Skin Irrit. 2; H315; C >= 5 %	
α, α- Dimethylbenzylhydroperoxid 80-15-9 201-254-7 01-2119475796-19	0,1-< 1 %	STOT RE 2, H373 Skin Corr. 1B, H314 Acute Tox. 2, Einatmen, H330 Aquatic Chronic 2, H411 Acute Tox. 4, Oral, H302 Acute Tox. 4, Dermal, H312 Org. Perox. E, H242 STOT SE 3, H335	Skin Irrit. 2; H315; C 3 - < 10 % Eye Dam. 1; H318; C 3 - < 10 % Eye Irrit. 2; H319; C 1 - < 3 % Skin Corr. 1B; H314; C >= 10 % STOT SE 3; H335; C >= 1 % ===== dermal:ATE = 1.100 mg/kg	
Butylhydroxytoluol 128-37-0 204-881-4 01-2119565113-46	0,1-< 0,25 %	Aquatic Acute 1, H400 Aquatic Chronic 1, H410	M acute = 1 M chronic = 1	
1,1,2-Trichlorethan 79-00-5 201-166-9	0,1-< 1 %	Acute Tox. 4, Einatmen, H332 Acute Tox. 4, Oral, H302 Acute Tox. 4, Dermal, H312 Carc. 2, H351		

Vollständiger Wortlaut der H-Sätze und anderer Abkürzungen siehe Kapitel 16 'Sonstige Angaben'. Für Stoffe ohne Einstufung können länderspezifische Arbeitsplatzgrenzwerte vorhanden sein.

ABSCHNITT 4: Erste-Hilfe-Maßnahmen

4.1. Beschreibung der Erste-Hilfe-Maßnahmen

Einatmen:

Patienten an die frische Luft bringen. Bei länger anhaltenden Beschwerden Arzt konsultieren.

Hautkontakt:

Spülung mit fließendem Wasser und Seife.

Bei anhaltender Reizung ärztlichen Rat einholen.

Augenkontakt:

Sofortige Spülung unter fließendem Wasser (10 Minuten lang), Facharzt aufsuchen.

Verschlucken:

Spülung der Mundhöhle, trinken von 1-2 Gläsern Wasser, kein Erbrechen auslösen, Arzt konsultieren.

4.2. Wichtigste akute und verzögert auftretende Symptome und Wirkungen

Haut: Rötung, Entzündung.

Haut: Hautausschlag, Nesselsucht.

Atemwege: Reizung, Husten, Kurzatmigkeit/Atemnot, Gefühl der Brustenge (Angina Pectoris).

Nach Augenkontakt: Durch Ätzwirkung permante Augenschäden (Beeinträchtigung der Sehfähigkeit) möglich.

4.3. Hinweise auf ärztliche Soforthilfe oder Spezialbehandlung

Siehe Kapitel: Beschreibung der Erste-Hilfe-Maßnahmen

ABSCHNITT 5: Maßnahmen zur Brandbekämpfung

5.1. Löschmittel

Geeignete Löschmittel:

Kohlendioxid, Schaum, Pulver

5.2. Besondere vom Stoff oder Gemisch ausgehende Gefahren

Im Brandfall können Kohlenmonoxid (CO), Kohlendioxid (CO2) und Stickoxide (NOx) freigesetzt werden. Spurenmengen toxischer und/oder reizender Rauchgase können freigesetzt werden; deshalb wird die Verwendung eines Atemgeräts empfohlen.

5.3. Hinweise für die Brandbekämpfung

Umgebungsluftunabhängiges Atemschutzgerät und Vollschutzanzug tragen.

Zusätzliche Hinweise:

Im Brandfall gefährdete Behälter mit Spritzwasser kühlen.

ABSCHNITT 6: Maßnahmen bei unbeabsichtigter Freisetzung

6.1. Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällen anzuwendende Verfahren

Zündquellen entfernen.

Augenkontakt und Hautkontakt vermeiden.

Schutzausrüstung tragen.

Für ausreichende Be- und Entlüftung sorgen.

6.2. Umweltschutzmaßnahmen

Nicht in die Kanalisation / Oberflächenwasser / Grundwasser gelangen lassen.

6.3. Methoden und Material für Rückhaltung und Reinigung

Bei geringen verschütteten Mengen diese mit Papiertuch aufwischen und für die Entsorgung in einen Behälter geben. Bei großen verschütteten Mengen mit reaktionsträgem Absorptionsmaterial aufsaugen und für die Entsorgung in einen dicht verschlossenen Behälter geben.

Kontaminiertes Material als Abfall nach Absch. 13 entsorgen.

6.4. Verweis auf andere Abschnitte

Hinweise in Abschnitt 8 beachten

ABSCHNITT 7: Handhabung und Lagerung

7.1. Schutzmaßnahmen zur sicheren Handhabung

Nur in gut belüfteten Räumen verwenden.

Augenkontakt und Hautkontakt vermeiden.

Länger andauernder oder wiederholter Hautkontakt sollte vermieden werden, um die Gefahr einer Sensibilisierung der Haut so gering wie möglich zu halten

Von Zündquellen fernhalten. - Nicht rauchen.

Hinweise in Abschnitt 8 beachten

Hygienemaßnahmen:

Gute industrielle Hygienebedingungen sind einzuhalten

Vor den Pausen und nach Arbeitsende Hände waschen.

Bei der Arbeit nicht essen, trinken oder rauchen.

7.2. Bedingungen zur sicheren Lagerung unter Berücksichtigung von Unverträglichkeiten

entsprechend dem techn. Datenblatt

Empfohlene Lagertemperatur 2 bis 8°C.

7.3. Spezifische Endanwendungen

Acrylatklebstoff

ABSCHNITT 8: Begrenzung und Überwachung der Exposition/Persönliche Schutzausrüstungen

8.1. Zu überwachende Parameter

${\bf Arbeits platz grenz werte}$

Gültig für

Deutschland

Inhaltstsoff [Regulierte Stoffgruppe]	ppm	mg/m ³	Werttyp	Kategorie Kurzzeitwert / Bemerkungen	Gesetzliche Liste
Methylmethacrylat 80-62-6 [METHYL-METHACRYLAT]	50	210	AGW:	2 Ein Risiko der Fruchtschädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).	TRGS 900
Methylmethacrylat 80-62-6 [METHYL-METHACRYLAT]			Kategorie für Kurzzeitwerte	Kategorie I: Stoffe bei denen die lokale Wirkung grenzwertbestimmend ist oder atemwegssensibilisierende Stoffe.	TRGS 900
Methylmethacrylat 80-62-6 [METHYLMETHACRYLAT]	100		Kurzzeitwert	Indikativ	ECTLV
Methylmethacrylat 80-62-6 [METHYLMETHACRYLAT]	50		Tagesmittelwert	Indikativ	ECTLV
Methacrylsäure 79-41-4 [METHACRYLSÄURE]	50	180	AGW:	2 Ein Risiko der Fruchtschädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).	TRGS 900
Methacrylsäure 79-41-4 [METHACRYLSÄURE]			Kategorie für Kurzzeitwerte	Kategorie I: Stoffe bei denen die lokale Wirkung grenzwertbestimmend ist oder atemwegssensibilisierende Stoffe.	TRGS 900
2,6-Di-tert-butyl-p-kresol 128-37-0 [2,6-DI-TERT-BUTYL-P-KRESOL, EINATEMBARE FRAKTION]			Kategorie für Kurzzeitwerte	Kategorie II: Resorptiv wirksame Stoffe.	TRGS 900
2.6-Di-tert-butyl-p-kresol 128-37-0 [2.6-DI-TERT-BUTYL-P-KRESOL, EINATEMBARE FRAKTION]		10	AGW:	4 Ein Risiko der Fruchtschädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).	TRGS 900
1,1,2-Trichlorethan 79-00-5 [1,1,2-TRICHLORETHAN]			Hautbezeichnung:	Hautresorptiv	TRGS 900
[1,1,2-Trichlorethan 79-00-5 [1,1,2-Trichlorethan]	1	5,5	AGW:	2	TRGS 900
1,1,2-Trichlorethan 79-00-5 [1,1,2-Trichlorethan]			Kategorie für Kurzzeitwerte	Kategorie I: Stoffe bei denen die lokale Wirkung grenzwertbestimmend ist oder atemwegssensibilisierende Stoffe.	TRGS 900

Predicted No-Effect Concentration (PNEC):

Name aus Liste	Umweltkompa rtiment	Exposition szeit	Wert				Bemerkungen
	Tument	SECIE	mg/l	ppm	mg/kg	andere	
Methylmethacrylat 80-62-6	Süsswasser		0,94 mg/l				
Methylmethacrylat 80-62-6	Salzwasser		0,94 mg/l				
Methylmethacrylat 80-62-6	Wasser (zeitweilige Freisetzung)		0,94 mg/l				
Methylmethacrylat 80-62-6	Kläranlage		10 mg/l				
Methylmethacrylat 80-62-6	Sediment (Süsswasser)				5,74 mg/kg		
Methylmethacrylat 80-62-6	Boden				1,47 mg/kg		
Methacrylsäure 79-41-4	Süsswasser		0,82 mg/l				
Methacrylsäure 79-41-4	Salzwasser		0,82 mg/l				
Methacrylsäure 79-41-4	Kläranlage		10 mg/l				
Methacrylsäure 79-41-4	Wasser (zeitweilige Freisetzung)		0,82 mg/l				
Methacrylsäure 79-41-4	Boden				1,2 mg/kg		
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Süsswasser		0,45 mg/l				
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Salzwasser		0,045 mg/l				
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Kläranlage		8,2 mg/l				
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Sediment (Süsswasser)				1,6 mg/kg		
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Sediment (Salzwasser)				0,16 mg/kg		
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Boden				0,063 mg/kg		
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Wasser (zeitweilige Freisetzung)		0,45 mg/l				
.alpha.,.alphaDimethylbenzylhydroperoxid 80-15-9	Süsswasser		0,0031 mg/l				
.alpha.,alphaDimethylbenzylhydroperoxid 80-15-9	Wasser (zeitweilige Freisetzung)		0,031 mg/l				
.alpha.,.alphaDimethylbenzylhydroperoxid 80-15-9	Salzwasser		0,00031 mg/l				
.alpha.,.alphaDimethylbenzylhydroperoxid 80-15-9	Kläranlage		0,35 mg/l				
.alpha.,.alphaDimethylbenzylhydroperoxid 80-15-9	Sediment (Süsswasser)				0,023 mg/kg		
.alpha.,.alphaDimethylbenzylhydroperoxid 80-15-9	Sediment (Salzwasser)				0,0023 mg/kg		
.alpha.,.alphaDimethylbenzylhydroperoxid 80-15-9	Boden				0,0029 mg/kg		
2,6-Di-tert-butyl-p-kresol 128-37-0	Süsswasser		0,000199 mg/l				
2,6-Di-tert-butyl-p-kresol 128-37-0	Salzwasser		0,00002 mg/l				
2,6-Di-tert-butyl-p-kresol 128-37-0	Kläranlage		0,17 mg/l				
2,6-Di-tert-butyl-p-kresol 128-37-0	Sediment (Süsswasser)				0,0996 mg/kg		
2,6-Di-tert-butyl-p-kresol	Sediment				0,00996		

128-37-0	(Salzwasser)		mg/kg	l l
2,6-Di-tert-butyl-p-kresol 128-37-0	Boden		0,04769 mg/kg	
2,6-Di-tert-butyl-p-kresol 128-37-0	oral		8,33 mg/kg	
2,6-Di-tert-butyl-p-kresol 128-37-0	Wasser (zeitweilige Freisetzung)	0,00199 mg/l		
2,6-Di-tert-butyl-p-kresol 128-37-0	Luft			keine Gefahr identifiziert

Derived No-Effect Level (DNEL):

Name aus Liste	Anwendungsge biet	Exposition sweg	Auswirkung auf die Gesundheit	Exposition sdauer	Wert	Bemerkungen
Methylmethacrylat 80-62-6	Arbeitnehmer	dermal	Akute/kurzfristige Exposition - lokale Effekte		1,5 mg/cm2	
Methylmethacrylat 80-62-6	Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte		13,67 mg/kg	
Methylmethacrylat 80-62-6	Arbeitnehmer	Einatmen	Langfristige Exposition - systemische Effekte		208 mg/m3	
Methylmethacrylat 80-62-6	Arbeitnehmer	dermal	Langfristige Exposition - lokale Effekte		1,5 mg/cm2	
Methylmethacrylat 80-62-6	Arbeitnehmer	Einatmen	Langfristige Exposition - lokale Effekte		208 mg/m3	
Methylmethacrylat 80-62-6	Breite Öffentlichkeit	dermal	Akute/kurzfristige Exposition - lokale Effekte		1,5 mg/cm2	
Methylmethacrylat 80-62-6	Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte		8,2 mg/kg	
Methylmethacrylat 80-62-6	Breite Öffentlichkeit	Einatmen	Langfristige Exposition - systemische Effekte		74,3 mg/m3	
Methylmethacrylat 80-62-6	Breite Öffentlichkeit	dermal	Langfristige Exposition - lokale Effekte		1,5 mg/cm2	
Methylmethacrylat 80-62-6	Breite Öffentlichkeit	Einatmen	Langfristige Exposition - lokale Effekte		104 mg/m3	
Methacrylsäure 79-41-4	Arbeitnehmer	Einatmen	Langfristige Exposition - lokale Effekte		88 mg/m3	
Methacrylsäure 79-41-4	Arbeitnehmer	Einatmen	Langfristige Exposition - systemische Effekte		29,6 mg/m3	
Methacrylsäure 79-41-4	Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte		4,25 mg/kg	
Methacrylsäure 79-41-4	Breite Öffentlichkeit	Einatmen	Langfristige Exposition - lokale Effekte		6,55 mg/m3	
Methacrylsäure 79-41-4	Breite Öffentlichkeit	Einatmen	Langfristige Exposition - systemische Effekte		6,3 mg/m3	
Methacrylsäure 79-41-4	Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte		2,55 mg/kg	
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte		10 mg/kg	
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Arbeitnehmer	Einatmen	Langfristige Exposition - systemische Effekte		70,5 mg/m3	
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Breite Öffentlichkeit	Inhalation	Langfristige Exposition - systemische Effekte		17 mg/m3	
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische		5 mg/kg	

			Effekte		
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Breite Öffentlichkeit	oral	Langfristige Exposition - systemische Effekte	5 mg/kg	
[3-(2,3- Epoxypropoxy)propyl]trimethoxysilan 2530-83-8	Breite Öffentlichkeit	Inhalation	Akute/kurzfristige Exposition - systemische Effekte	26400 mg/m3	
1-Methyltrimethylendimethacrylat 1189-08-8	Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte	14,5 mg/m3	
1-Methyltrimethylendimethacrylat 1189-08-8	Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte	4,2 mg/kg	
1-Methyltrimethylendimethacrylat 1189-08-8	Breite Öffentlichkeit	oral	Langfristige Exposition - systemische Effekte	2,5 mg/kg	
1-Methyltrimethylendimethacrylat 1189-08-8	Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte	2,5 mg/kg	
1-Methyltrimethylendimethacrylat 1189-08-8	Breite Öffentlichkeit	Inhalation	Langfristige Exposition - systemische Effekte	4,3 mg/m3	
.alpha.,alphaDimethylbenzylhydroperoxid 80-15-9	Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte	6 mg/m3	
2,6-Di-tert-butyl-p-kresol 128-37-0	Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte	3,5 mg/m3	keine Gefahr identifiziert
2,6-Di-tert-butyl-p-kresol 128-37-0	Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte	0,5 mg/kg	keine Gefahr identifiziert
2,6-Di-tert-butyl-p-kresol 128-37-0	Breite Öffentlichkeit	Inhalation	Langfristige Exposition - systemische Effekte	0,86 mg/m3	keine Gefahr identifiziert
2,6-Di-tert-butyl-p-kresol 128-37-0	Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte	0,25 mg/kg	keine Gefahr identifiziert
2,6-Di-tert-butyl-p-kresol 128-37-0	Breite Öffentlichkeit	oral	Langfristige Exposition - systemische Effekte	0,25 mg/kg	keine Gefahr identifiziert

Biologischer Grenzwert (BGW):

keine

8.2. Begrenzung und Überwachung der Exposition:

Atemschutz:

Für ausreichende Be- und Entlüftung sorgen.
Eine zugelassene Atemschutzmaske bzwAtemschutzgerät mit geeigneter Kartusche für organische Dämpfe sollte getragen werden, wenn das Produkt in einer schlecht belüfteten Umgebung verwendet wird Filtertyp: A (EN 14387)

Handschutz:

Chemikalienbeständige Schutzhandschuhe (EN 374).

Geeignete Materialen bei kurzfristigem Kontakt bzw. Spritzern (Empfohlen: Mindestens Schutzindex 2, entsprechend > 30

Minuten Permeationszeit nach EN 374):

Nitrilkautschuk (NBR; >= 0,4 mm Schichtdicke)

 $Geeignete\ Materialien\ auch\ bei\ l\"{a}ngerem,\ direktem\ Kontakt\ (Empfohlen:\ Schutzindex\ 6,\ entsprechend > 480\ Minuten$

Permeationszeit nach EN 374):

Nitrilkautschuk (NBR; >= 0,4 mm Schichtdicke)

Die Angaben basieren auf Literaturangaben und Informationen von Handschuhherstellern oder sind durch Analogieschluß von ähnlichen Stoffen abgeleitet. Es ist zu beachten, dass die Gebrauchsdauer eines Chemikalienschutzhandschuhs in der Praxis auf Grund der vielen Einflußfaktoren (z.B. Temperatur) deutlich kürzer als die nach EN 374 ermittelte Permeationszeit sein kann.

Bei Abnutzungserscheinungen ist der Handschuh zu wechseln.

Augenschutz:

Gestellschutzbrille tragen.

Der Augenschutz sollte konform zur EN 166 sein.

Körperschutz:

Bei der Arbeit geeignete Schutzkleidung tragen.

Die Schutzkleidung sollte konform zur EN 14605 für Flüssigkeitsspritzer oder zur EN 13982 für Stäube sein.

Hinweise zu persönlicher Schutzausrüstung:

Die Informationen zur vorgeschlagenen persönlichen Schutzausrüstungen haben nur eine beratende Funktion. Eine vollständige Risikoabschätzung sollte vor der Verwendung des Produktes durchgeführt werden, um einzuschätzen, ob sich die angezeigten persönlichen Schutzausrüstungen für die örtlichen Gegebenheiten eignen. Die persönliche Schutzausrüstung sollte konform zu den maßgeblichen EU-Standards sein.

ABSCHNITT 9: Physikalische und chemische Eigenschaften

9.1. Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften

Aggregatzustand flüssig
Lieferform Flüssigkeit
Farbe gelb
Geruch kräftig

Erstarrungstemperatur < 0 °C (< 32 °F) Siedebeginn 101 °C (213.8 °F) Entzündbarkeit brennbare Flüssigkeit

Explosionsgrenzen

untere 1,7 %(V); obere 8,2 %(V);

Flammpunkt 12 °C (53.6 °F) Selbstentzündungstemperatur 435 °C (815 °F) Zersetzungstemperatur Wird derzeit ermittelt

pH-Wert Nicht anwendbar, Das Produkt ist in Wasser unlöslich

Viskosität (kinematisch) 17.000 - 35.000 mm2/s

(25 °C (77 °F);)

Viskosität, dynamisch 20.000 - 40.000 mPa.s Viskosität n. Brookfield

(Brookfield; Gerät: RVT; 25 °C (77 °F);

Rot.freq.: 20 min-1; Spindel Nr.: 6)

Löslichkeit qualitativ unlöslich

(20 °C (68 °F); Lsm.: Wasser)

Verteilungskoeffizient: n-Octanol/Wasser Wird derzeit ermittelt

Zompfdruck Wird derzeit ermittelt

Zom mbar;keine Methode

(50 °C (122 °F))

Dichte 1,1 g/cm3 keine Methode

(20 °C (68 °F))

Relative Dampfdichte: 3,5

(20 °C)

Partikeleigenschaften Wird derzeit ermittelt

9.2. Sonstige Angaben

Weitere Informationen treffen nicht auf dieses Produkt zu

ABSCHNITT 10: Stabilität und Reaktivität

10.1. Reaktivität

Reaktion mit starken Säuren.

Reagiert mit starken Oxidationsmitteln.

10.2. Chemische Stabilität

Stabil unter angegebenen Lagerungsbedingungen.

10.3. Möglichkeit gefährlicher Reaktionen

Siehe Abschnitt Reaktivität

10.4. Zu vermeidende Bedingungen

Keine Zersetzung bei bestimmungsgemäßer Verwendung.

Hitze, Flammen, Funken und andere Zündquellen fernhalten.

10.5. Unverträgliche Materialien

Siehe Abschnitt Reaktivität.

10.6. Gefährliche Zersetzungsprodukte

Kohlenoxide

ABSCHNITT 11: Toxikologische Angaben

1.1 Angaben zu den Gefahrenklassen im Sinne der Verordnung (EG) Nr. 1272/2008

Akute orale Toxizität:

Werttyp	Wert	Spezies	Methode
LD50	9.400 mg/kg	Ratte	nicht spezifiziert
LD50	1.320 mg/kg	Ratte	equivalent or similar to OECD Guideline 401 (Acute Oral
		_	Toxicity)
LD50	8.025 mg/kg	Ratte	equivalent or similar to OECD Guideline 401 (Acute Oral
			Toxicity)
LD50	> 5.000 mg/kg	Ratte	nicht spezifiziert
LD50	> 2.000 mg/kg	Ratte	OECD Guideline 420 (Acute Oral Toxicity)
LD50	382 mg/kg	Ratte	weitere Richtlinien:
LD50	> 6.000 mg/kg	Ratte	OECD Guideline 401 (Acute Oral Toxicity)
			The state of the s
	LD50 LD50 LD50 LD50 LD50	LD50 9.400 mg/kg LD50 1.320 mg/kg LD50 8.025 mg/kg LD50 > 5.000 mg/kg LD50 > 2.000 mg/kg LD50 382 mg/kg	LD50 9.400 mg/kg Ratte LD50 1.320 mg/kg Ratte LD50 8.025 mg/kg Ratte LD50 > 5.000 mg/kg Ratte LD50 > 2.000 mg/kg Ratte LD50 > 2.000 mg/kg Ratte LD50 382 mg/kg Ratte

Akute dermale Toxizität:

Gefährliche Inhaltsstoffe CAS-Nr.	Werttyp	Wert	Spezies	Methode
Methylmethacrylat 80-62-6	LD50	> 5.000 mg/kg	Kaninchen	nicht spezifiziert
Methacrylsäure 79-41-4	LD50	500 - 1.000 mg/kg	Kaninchen	Dermales Toxizität Screening
Methacrylsäure 79-41-4	Acute toxicity estimate (ATE)	500 mg/kg		Expertenbewertung
[3-(2,3- Epoxypropoxy)propyl]tri methoxysilan 2530-83-8	LD50	4.250 mg/kg	Kaninchen	equivalent or similar to OECD Guideline 402 (Acute Dermal Toxicity)
1- Methyltrimethylendimeth acrylat 1189-08-8	LD50	> 3.000 mg/kg	Kaninchen	nicht spezifiziert
Reaktionsprodukt: Bisphenol-A- Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	LD50	> 2.000 mg/kg	Ratte	OECD Guideline 402 (Acute Dermal Toxicity)
α, α- Dimethylbenzylhydropero xid 80-15-9	Acute toxicity estimate (ATE)	1.100 mg/kg		Expertenbewertung
Butylhydroxytoluol 128-37-0	LD50	> 2.000 mg/kg	Ratte	OECD Guideline 402 (Acute Dermal Toxicity)

Akute inhalative Toxizität:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Testatmosph re	Expositio	Spezies	Methode
CAS-Nr.				nsdauer		
Methylmethacrylat	LC50	29,8 mg/l	Dampf	4 h	Ratte	nicht spezifiziert
80-62-6						
Methacrylsäure	LC50	> 3,6 mg/l	Staub/Nebel	4 h	Ratte	OECD Guideline 403 (Acute
79-41-4						Inhalation Toxicity)
Methacrylsäure	Acute	3,61 mg/l				Expertenbewertung
79-41-4	toxicity					
	estimate					
	(ATE)					
[3-(2,3-	LC50	> 5,3 mg/l	Staub/Nebel	4 h	Ratte	equivalent or similar to OECD
Epoxypropoxy)propyl]tri						Guideline 403 (Acute
methoxysilan						Inhalation Toxicity)
2530-83-8						
α, α-	LC50	1,370 mg/l	Dampf	4 h	Ratte	nicht spezifiziert
Dimethylbenzylhydropero						
xid						
80-15-9						

Ätz-/Reizwirkung auf die Haut:

Nicht Ätzend gegenüber Haut entsprechend der Test-Methode B40 Skin corrosion - Human skin model assay, entsprechend der Test-Methode OECD 431 oder auf Grund von Analogien zu ähnlichen Produkten, die ausgetestet wurden.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Expositio nsdauer	Spezies	Methode
Methacrylsäure 79-41-4	ätzend	3 min	Kaninchen	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
[3-(2,3- Epoxypropoxy)propyl]tri methoxysilan 2530-83-8	nicht reizend	24 h	Kaninchen	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
Reaktionsprodukt: Bisphenol-A- Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	nicht reizend	4 h	Kaninchen	nicht spezifiziert
α, α- Dimethylbenzylhydropero xid 80-15-9	ätzend		Kaninchen	Draize Test
Butylhydroxytoluol 128-37-0	nicht reizend	4 h	Kaninchen	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)

Schwere Augenschädigung/-reizung:

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Expositio nsdauer	Spezies	Methode
Methacrylsäure 79-41-4	ätzend		Kaninchen	Draize Test
[3-(2,3- Epoxypropoxy)propyl]tri methoxysilan 2530-83-8	Gefahr ernster Augenschäden	20 s	Kaninchen	OECD Guideline 405 (Acute Eye Irritation / Corrosion)
Reaktionsprodukt: Bisphenol-A- Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	nicht reizend		Kaninchen	OECD Guideline 405 (Acute Eye Irritation / Corrosion)
Butylhydroxytoluol 128-37-0	leicht reizend		Kaninchen	OECD Guideline 405 (Acute Eye Irritation / Corrosion)

Sensibilisierung der Atemwege/Haut:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Ergebnis	Testtyp	Spezies	Methode
CAS-Nr.				
Methylmethacrylat	sensibilisierend	locales Maus-Lymphnode	Maus	OECD Guideline 429 (Skin Sensitisation:
80-62-6		Muster		Local Lymph Node Assay)
Methacrylsäure	nicht	Buehler test	Meerschweinc	equivalent or similar to OECD Guideline
79-41-4	sensibilisierend		hen	406 (Skin Sensitisation)
[3-(2,3-	nicht	Buehler test	Meerschweinc	OECD Guideline 406 (Skin Sensitisation)
Epoxypropoxy)propyl]tri	sensibilisierend		hen	
methoxysilan				
2530-83-8				
1-	sensibilisierend	locales Maus-Lymphnode	Maus	OECD Guideline 429 (Skin Sensitisation:
Methyltrimethylendimeth		Muster		Local Lymph Node Assay)
acrylat				
1189-08-8				
Reaktionsprodukt:	sensibilisierend	locales Maus-Lymphnode	Maus	OECD Guideline 429 (Skin Sensitisation:
Bisphenol-A-		Muster		Local Lymph Node Assay)
Epichlorhydrinharze mit				
durchschnittlichem				
Molekulargewicht ≤ 700				
25068-38-6				
Butylhydroxytoluol	nicht	Draize Test	Meerschweinc	Draize Test
128-37-0	sensibilisierend		hen	

Keimzell-Mutagenität:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Studientyp / Verabreichungsro ute	Metabolische Aktivierung/ Expositionszeit	Spezies	Methode
Methylmethacrylat 80-62-6	negativ	bacterial reverse mutation assay (e.g Ames test)	mit und ohne		nicht spezifiziert
Methacrylsäure 79-41-4	negativ	bacterial reverse mutation assay (e.g Ames test)	mit und ohne		equivalent or similar to OECD Guideline 471 (Bacterial Reverse Mutation Assay)
[3-(2,3- Epoxypropoxy)propyl]tri methoxysilan 2530-83-8	A mutagenic potential can not be excluded.	_	mit und ohne		OECD Guideline 476 (In vitro Mammalian Cell Gene Mutation Test)
Reaktionsprodukt: Bisphenol-A- Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	negativ	bacterial reverse mutation assay (e.g Ames test)	mit und ohne		OECD Guideline 472 (Genetic Toxicology: Escherichia coli, Reverse Mutation Assay)
α, α- Dimethylbenzylhydropero xid 80-15-9	positiv	bacterial reverse mutation assay (e.g Ames test)	ohne		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Butylhydroxytoluol 128-37-0	negativ	bacterial reverse mutation assay (e.g Ames test)	mit und ohne		nicht spezifiziert
Butylhydroxytoluol 128-37-0	negativ	in vitro Säugetierchromoso nen Anomalien- Test	mit und ohne		nicht spezifiziert
Butylhydroxytoluol 128-37-0	negativ	Säugetierzell- Genmutationsmuste r	with		nicht spezifiziert

Karzinogenität

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Aufnahmeweg	Expositions dauer / Häufigkeit der Behandlung	Spezies	Geschlecht	Methode
Methacrylsäure 79-41-4	nicht krebserzeugend	Inhalation	2 y	Maus	männlich / weiblich	OECD Guideline 451 (Carcinogenicity Studies)
Reaktionsprodukt: Bisphenol-A- Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	nicht krebserzeugend	dermal	2 y daily	Maus	männlich	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)
Reaktionsprodukt: Bisphenol-A- Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	nicht krebserzeugend	oral über eine Sonde	2 y daily	Ratte	männlich / weiblich	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)
Butylhydroxytoluol 128-37-0		oral, im Futter	2 y daily	Ratte	männlich	

Reproduktionstoxizität:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Ergebnis / Wert	Testtyp	Aufnahmew	Spezies	Methode
CAS-Nr.			eg		
Methacrylsäure 79-41-4	NOAEL P 50 mg/kg	2- Generatione	oral über eine Sonde	Ratte	OECD Guideline 416 (Two- Generation Reproduction
	NOAEL F1 400 mg/kg	n-Studie			Toxicity Study)
	NOAEL F2 400 mg/kg				
Reaktionsprodukt:	NOAEL P >= 50 mg/kg	2-	oral über	Ratte	OECD Guideline 416 (Two-
Bisphenol-A-		Generatione	eine Sonde		Generation Reproduction
Epichlorhydrinharze mit	NOAEL F1 $>= 750 \text{ mg/kg}$	n-Studie			Toxicity Study)
durchschnittlichem					
Molekulargewicht ≤ 700	NOAEL F2 $>= 750 \text{ mg/kg}$				
25068-38-6					
Butylhydroxytoluol	NOAEL P 500 mg/kg	2-	oral, im	Ratte	nicht spezifiziert
128-37-0		Generatione	Futter		
		n-Studie			

Spezifische Zielorgan-Toxizität bei einmaliger Exposition:

Keine Daten vorhanden.

Spezifische Zielorgan-Toxizität bei wiederholter Exposition::

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Ergebnis / Wert	Aufnahmew	Expositionsdauer /	Spezies	Methode
CAS-Nr.		eg	Frequenz der		
			Anwendungen		
Methylmethacrylat	LOAEL 2000 ppm	Inhalation	14 weeks	Maus	Dose Range Finding
80-62-6			6 hrs/day, 5 days/wk		Study
Methylmethacrylat	NOAEL 1000 ppm	Inhalation	14 weeks	Maus	Dose Range Finding
80-62-6			6 hrs/day, 5 days/wk		Study
Methacrylsäure		Inhalation	90 d	Ratte	OECD Guideline 413
79-41-4			6 h/d, 5 d/w		(Subchronic Inhalation
					Toxicity: 90-Day)
[3-(2,3-	NOAEL 500 mg/kg	oral: nicht	28 d	Ratte	OECD Guideline 407
Epoxypropoxy)propyl]tri		spezifiziert			(Repeated Dose 28-Day
methoxysilan		-			Oral Toxicity in Rodents)
2530-83-8					
[3-(2,3-	NOAEL 0,225 mg/kg	Inhalation	14 d	Ratte	OECD Guideline 412
Epoxypropoxy)propyl]tri					(Repeated Dose
methoxysilan					Inhalation Toxicity:
2530-83-8					28/14-Day)
Reaktionsprodukt:	NOAEL 50 mg/kg	oral über	14 w	Ratte	OECD Guideline 408
Bisphenol-A-		eine Sonde	daily		(Repeated Dose 90-Day
Epichlorhydrinharze mit					Oral Toxicity in Rodents)
durchschnittlichem					, i
Molekulargewicht ≤ 700					
25068-38-6					
α, α-		Inhalation:	6 h/d	Ratte	nicht spezifiziert
Dimethylbenzylhydropero		Aerosol	5 d/w		
xid					
80-15-9					
Butylhydroxytoluol	NOAEL 25 mg/kg	oral, im	daily	Ratte	nicht spezifiziert
128-37-0		Futter	-		

Aspirationsgefahr:

Keine Daten vorhanden.

11.2 Angaben über sonstige Gefahren

Keine Daten vorhanden

ABSCHNITT 12: Umweltbezogene Angaben

Allgemeine Angaben zur Ökologie:

Nicht in die Kanalisation / Oberflächenwasser / Grundwasser gelangen lassen.

12.1. Toxizität

Toxizität (Fisch):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Expositionsdau	Spezies	Methode
CAS-Nr.			er		
Methylmethacrylat 80-62-6	LC50	350 mg/l	96 h	Leuciscus idus	OECD Guideline 203 (Fish, Acute Toxicity Test)
Methacrylsäure	LC50	85 mg/l	96 h	Salmo gairdneri (new name:	EPA OTS 797.1400 (Fish
79-41-4				Oncorhynchus mykiss)	Acute Toxicity Test)
[3-(2,3-	LC50	55 mg/l	96 h	Cyprinus carpio	EU Method C.1 (Acute
Epoxypropoxy)propyl]trimeth					Toxicity for Fish)
oxysilan					
2530-83-8					
1-	LC50	32,5 mg/l	48 h		DIN 38412-15
Methyltrimethylendimethacryl					
at					
1189-08-8					
Reaktionsprodukt: Bisphenol-	LC50	1,75 mg/l	96 h	Oncorhynchus mykiss	OECD Guideline 203 (Fish,
A-Epichlorhydrinharze mit					Acute Toxicity Test)
durchschnittlichem					
Molekulargewicht ≤ 700					
25068-38-6					
α, α-	LC50	3,9 mg/l	96 h	Oncorhynchus mykiss	OECD Guideline 203 (Fish,
Dimethylbenzylhydroperoxid					Acute Toxicity Test)
80-15-9					
Butylhydroxytoluol	LC50	Toxicity > Water	96 h	Brachydanio rerio (new name:	EU Method C.1 (Acute
128-37-0		solubility		Danio rerio)	Toxicity for Fish)
Butylhydroxytoluol	NOEC	0,053 mg/l	30 d	Oryzias latipes	OECD 210 (fish early lite
128-37-0					stage toxicity test)
1,1,2-Trichlorethan	LC50	136 mg/l	96 h	Pimephales promelas	OECD Guideline 203 (Fish,
79-00-5					Acute Toxicity Test)

Toxizität (Daphnia):

Gefährliche Inhaltsstoffe	Werttyp	Wert	Expositionsdau	Spezies	Methode
CAS-Nr.			er		
Methylmethacrylat	EC50	69 mg/l	48 h	Daphnia magna	EPA OTS 797.1300
80-62-6					(Aquatic Invertebrate Acute
					Toxicity Test, Freshwater
					Daphnids)
Methacrylsäure	EC50	> 130 mg/l	48 h	Daphnia magna	EPA OTS 797.1300
79-41-4					(Aquatic Invertebrate Acute
					Toxicity Test, Freshwater
					Daphnids)
[3-(2,3-	EC50	324 mg/l	48 h	Simocephalus vetulus	OECD Guideline 202
Epoxypropoxy)propyl]trimeth					(Daphnia sp. Acute
oxysilan					Immobilisation Test)
2530-83-8					
Reaktionsprodukt: Bisphenol-	EC50	1,7 mg/l	48 h	Daphnia magna	OECD Guideline 202
A-Epichlorhydrinharze mit					(Daphnia sp. Acute
durchschnittlichem					Immobilisation Test)
Molekulargewicht ≤ 700					
25068-38-6					
α, α-	EC50	18,84 mg/l	48 h	Daphnia magna	OECD Guideline 202
Dimethylbenzylhydroperoxid					(Daphnia sp. Acute
80-15-9					Immobilisation Test)
Butylhydroxytoluol	EC50	0,48 mg/l	48 h	Daphnia magna	OECD Guideline 202
128-37-0					(Daphnia sp. Acute
					Immobilisation Test)
1,1,2-Trichlorethan	EC50	160 mg/l	48 h	Daphnia magna	weitere Richtlinien:
79-00-5					

Chronische Toxizität gegenüber wirbellosen Wassertieren

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Expositionsdau	Spezies	Methode
CAS-Nr.			er		
Methylmethacrylat	NOEC	37 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia
80-62-6					magna, Reproduction Test)
[3-(2,3-	NOEC	100 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia
Epoxypropoxy)propyl]trimeth					magna, Reproduction Test)
oxysilan					
2530-83-8					
1-	NOEC	5,09 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia
Methyltrimethylendimethacryl					magna, Reproduction Test)
at					
1189-08-8					
Reaktionsprodukt: Bisphenol-	NOEC	0,3 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia
A-Epichlorhydrinharze mit					magna, Reproduction Test)
durchschnittlichem					
Molekulargewicht ≤ 700					
25068-38-6					
Butylhydroxytoluol	NOEC	0,069 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia
128-37-0					magna, Reproduction Test)

Toxizität (Algea):

 $Das\ Gemisch\ ist\ gem\"{a}B\ der\ Kalkulationsmethode,\ basierend\ auf\ den\ im\ Gemisch\ enthaltenen\ eingestuften\ Inhaltsstoffen\ eingestuft.$

Gefährliche Inhaltsstoffe CAS-Nr.	Werttyp	Wert	Expositionsdau er	Spezies	Methode
Methylmethacrylat 80-62-6	EC50	170 mg/l	96 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Methylmethacrylat 80-62-6	NOEC	100 mg/l	96 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Methacrylsäure 79-41-4	NOEC	8,2 mg/l	72 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Methacrylsäure 79-41-4	EC50	45 mg/l	72 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)
[3-(2,3- Epoxypropoxy)propyl]trimeth oxysilan 2530-83-8	EC50	350 mg/l	96 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga, Growth Inhibition Test)
[3-(2,3- Epoxypropoxy)propyl]trimeth oxysilan 2530-83-8	NOEC	130 mg/l	96 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga, Growth Inhibition Test)
1- Methyltrimethylendimethacryl at 1189-08-8	EC50	9,79 mg/l	72 h	Desmodesmus subspicatus	OECD Guideline 201 (Alga, Growth Inhibition Test)
1- Methyltrimethylendimethacryl at 1189-08-8	NOEC	2,11 mg/l	72 h	Desmodesmus subspicatus	OECD Guideline 201 (Alga, Growth Inhibition Test)
Reaktionsprodukt: Bisphenol- A-Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	EC50	> 11 mg/l	72 h	Scenedesmus capricornutum	OECD Guideline 201 (Alga, Growth Inhibition Test)
Reaktionsprodukt: Bisphenol- A-Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	NOEC	4,2 mg/l	72 h	Scenedesmus capricornutum	OECD Guideline 201 (Alga, Growth Inhibition Test)
α, α- Dimethylbenzylhydroperoxid 80-15-9	EC50	3,1 mg/l	72 h	Desmodesmus subspicatus (reported as Scenedesmus subspicatus)	OECD Guideline 201 (Alga, Growth Inhibition Test)
α, α- Dimethylbenzylhydroperoxid 80-15-9	NOEC	1 mg/l	72 h	Desmodesmus subspicatus (reported as Scenedesmus subspicatus)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Butylhydroxytoluol 128-37-0	EC50	Toxicity > Water solubility	72 h	Desmodesmus subspicatus (reported as Scenedesmus subspicatus)	EU Method C.3 (Algal Inhibition test)
Butylhydroxytoluol 128-37-0	EC10	0,4 mg/l	72 h	Desmodesmus subspicatus (reported as Scenedesmus subspicatus)	EU Method C.3 (Algal Inhibition test)
1,1,2-Trichlorethan 79-00-5	EC50	213 mg/l	72 h	Scenedesmus subspicatus (new name: Desmodesmus subspicatus)	OECD Guideline 201 (Alga, Growth Inhibition Test)

Toxizität bei Mikroorganismen

Gefährliche Inhaltsstoffe CAS-Nr.	Werttyp	Wert	Expositionsdau er	Spezies	Methode
Methylmethacrylat 80-62-6	EC20	> 150 - 200 mg/l	30 min		ISO 8192 (Test for Inhibition of Oxygen Consumption by Activated Sludge)
Methacrylsäure 79-41-4	EC10	100 mg/l	17 h		nicht spezifiziert
[3-(2,3- Epoxypropoxy)propyl]trimeth oxysilan 2530-83-8	EC50	> 100 mg/l		predominantly domestic sewage	OECD Guideline 209 (Activated Sludge, Respiration Inhibition Test)

1- Methyltrimethylendimethacryl at 1189-08-8	NOEC	20 mg/l	28 d	activated sludge, domestic	nicht spezifiziert
Reaktionsprodukt: Bisphenol- A-Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	IC50	> 100 mg/l	3 h	activated sludge, industrial	weitere Richtlinien:
α, α- Dimethylbenzylhydroperoxid 80-15-9	EC10	70 mg/l	30 min	nicht spezifiziert	nicht spezifiziert
Butylhydroxytoluol 128-37-0	EC50	Toxicity > Water solubility	3 h	activated sludge	OECD Guideline 209 (Activated Sludge, Respiration Inhibition Test)

12.2. Persistenz und Abbaubarkeit

Das Produkt ist biologisch nicht abbaubar.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Testtyp	Abbaubarkeit	Expositions dauer	Methode
Methylmethacrylat 80-62-6	leicht biologisch abbaubar	aerob	94 %	14 d	OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I))
Methacrylsäure 79-41-4	natürlich biologisch abbaubar	aerob	100 %	14 d	OECD Guideline 302 B (Inherent biodegradability: Zahn- Wellens/EMPA Test)
Methacrylsäure 79-41-4	leicht biologisch abbaubar	aerob	86 %	28 d	OECD Guideline 301 D (Ready Biodegradability: Closed Bottle Test)
[3-(2,3- Epoxypropoxy)propyl]trimeth oxysilan 2530-83-8	Nicht leicht biologisch abbaubar.	aerob	37 %	28 d	EU Method C.4-A (Determination of the "Ready" BiodegradabilityDissolved Organic Carbon (DOC) Die-Away Test)
1- Methyltrimethylendimethacryl at 1189-08-8	leicht biologisch abbaubar	aerob	84 %	28 d	OECD Guideline 310 (Ready BiodegradabilityCO2 in Sealed Vessels (Headspace Test)
Reaktionsprodukt: Bisphenol- A-Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	Nicht leicht biologisch abbaubar.	aerob	5 %	28 d	OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test)
α, α- Dimethylbenzylhydroperoxid 80-15-9	Nicht leicht biologisch abbaubar.	aerob	3 %	28 d	OECD Guideline 301 B (Ready Biodegradability: CO2 Evolution Test)
Butylhydroxytoluol 128-37-0	Nicht leicht biologisch abbaubar.	aerob	4,5 %	28 d	OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I))
Butylhydroxytoluol 128-37-0	not inherently biodegradable	aerob	5,2 - 5,6 %	35 d	OECD Guideline 302 C (Inherent Biodegradability: Modified MITI Test (II))
1,1,2-Trichlorethan 79-00-5	Nicht leicht biologisch abbaubar.	aerob	5 %	28 d	OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I))

${\bf 12.3.}\ Bio akkumulation spotenzial$

Keine Daten vorhanden.

Gefährliche Inhaltsstoffe CAS-Nr.	Biokonzentratio nsfaktor (BCF)	Expositionsda uer	Temperatur	Spezies	Methode
α, α- Dimethylbenzylhydroperoxid 80-15-9 Butylhydroxytoluol	9,1	56 d		Berechnung Cyprinus carpio	OECD Guideline 305 (Bioconcentration: Flow-through Fish Test) OECD Guideline 305 C
128-37-0	330 1.000	30 u		Cyprinus curpio	(Bioaccumulation: Test for the Degree of Bioconcentration in Fish)
1,1,2-Trichlorethan 79-00-5	2	14 d		Lepomis macrochirus	weitere Richtlinien:

12.4. Mobilität im Boden

Ausgehärtete Klebstoffe sind immobil.

Gefährliche Inhaltsstoffe CAS-Nr.	LogPow	Temperatur	Methode
Methylmethacrylat 80-62-6	1,38	20 °C	weitere Richtlinien:
Methacrylsäure 79-41-4	0,93	22 °C	OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake Flask Method)
[3-(2,3- Epoxypropoxy)propyl]trimeth oxysilan 2530-83-8	0,5	20 °C	QSAR (Quantitative Structure Activity Relationship)
Reaktionsprodukt: Bisphenol- A-Epichlorhydrinharze mit durchschnittlichem Molekulargewicht ≤ 700 25068-38-6	3,242	25 °C	EU Method A.8 (Partition Coefficient)
α, α- Dimethylbenzylhydroperoxid 80-15-9	1,6	25 °C	OECD Guideline 117 (Partition Coefficient (n-octanol / water), HPLC Method)
Butylhydroxytoluol 128-37-0	5,1		OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake Flask Method)
1,1,2-Trichlorethan 79-00-5	> 2,05 - < 2,49	20 °C	QSAR (Quantitative Structure Activity Relationship)

12.5. Ergebnisse der PBT- und vPvB-Beurteilung

Gefährliche Inhaltsstoffe	PBT / vPvB
CAS-Nr.	
Methylmethacrylat	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
80-62-6	sehr Bioakkumulativ (vPvB).
Methacrylsäure	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
79-41-4	sehr Bioakkumulativ (vPvB).
[3-(2,3-Epoxypropoxy)propyl]trimethoxysilan	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
2530-83-8	sehr Bioakkumulativ (vPvB).
1-Methyltrimethylendimethacrylat	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
1189-08-8	sehr Bioakkumulativ (vPvB).
α, α-Dimethylbenzylhydroperoxid	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
80-15-9	sehr Bioakkumulativ (vPvB).
Butylhydroxytoluol	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
128-37-0	sehr Bioakkumulativ (vPvB).

12.6. Endokrinschädliche Eigenschaften

Keine Daten vorhanden

12.7. Andere schädliche Wirkungen

Keine Daten vorhanden.

ABSCHNITT 13: Hinweise zur Entsorgung

13.1. Verfahren der Abfallbehandlung

Entsorgung des Produktes:

Gemäß einschlägiger örtlicher und nationaler Vorschriften entsorgen.

Sammlung und Abgabe an Recycling-Unternehmen oder an eine zugelassene Beseitigungsanstalt.

Entsorgung ungereinigter Verpackung:

Nach Gebrauch sind Tuben, Gebinde und Flaschen, die noch Restanhaftungen des Produktes enthalten, als Sondermüll zu entsorgen.

Entsorgung der Verpackung gemäß behördlichen Vorschriften.

Abfallschlüssel

08 04 09* Klebstoff- und Dichtmassenabfälle, die organische Lösemittel oder andere gefährliche Stoffe enthalten Die EAK-Abfallschlüssel sind nicht produkt- sondern herkunftsbezogen. Der Hersteller kann daher für die Produkte, die in unterschiedlichen Branchen Anwendung finden, keinen Abfallschlüssel angeben. Die aufgeführten Schlüssel sind als Empfehlung für den Anwender zu verstehen.

ABSCHNITT 14: Angaben zum Transport

14.1. UN-Nummer

ADR	1133
RID	1133
ADN	1133
IMDG	1133
IATA	1133

14.2. Ordnungsgemäße UN-Versandbezeichnung

ADR	KLEBSTOFFE
RID	KLEBSTOFFE
ADN	KLEBSTOFFE
IMDG	ADHESIVES
IATA	Adhesives

14.3. Transportgefahrenklassen

ADR	3
RID	3
ADN	3
IMDG	3
IATA	3

14.4. Verpackungsgruppe

ADR	II
RID	II
ADN	II
IMDG	II
IATA	II

14.5. Umweltgefahren

ADR	Nicht anwendbar
RID	Nicht anwendbar
ADN	Nicht anwendbar
IMDG	Nicht anwendbar
IATA	Nicht anwendbar

14.6. Besondere Vorsichtsmaßnahmen für den Verwender

ADR	Sondervorschrift 640D
	Tunnelcode: (D/E)
RID	Sondervorschrift 640D
ADN	Sondervorschrift 640D
IMDG	Nicht anwendbar
IATA	Nicht anwendbar

14.7. Massengutbeförderung auf dem Seeweg gemäß IMO-Instrumenten

Nicht anwendbar

ABSCHNITT 15: Rechtsvorschriften

15.1. Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifische Rechtsvorschriften für den Stoff oder das Gemisch

Ozon-schädliche Substanzen (ODS) nach Verordnung (EG) Nr. 1005/2009: Nicht anwendbar Dem PIC-Verfahren unterliegenden Chemikalien nach Verordnung (EU) Nr. Nicht anwendbar 649/2012:

Persistente organische Schadstoffe (POPs) nach Verordnung (EU) 2019/1021: Nicht anwendbar

VOC-Gehalt 53,4 %

(2010/75/EC)

15.2. Stoffsicherheitsbeurteilung

Eine Stoffsicherheitsbeurteilung wurde nicht durchgeführt.

Nationale Vorschriften/Hinweise (Deutschland):

WGK: WGK 1: schwach wassergefährdend (Verordnung über Anlagen zum Umgang

mit wassergefährdenden Stoffen (AwSV)) Einstufung nach AwSV, Anlage 1 (5.2)

Lagerklasse gemäß TRGS 510: 3

ABSCHNITT 16: Sonstige Angaben

Die Kennzeichnung des Produktes ist in Kapitel 2 aufgeführt. Vollständiger Wortlaut aller Abkürzungen im vorliegenden Sicherheitsdatenblatt sind wie folgt:

H225 Flüssigkeit und Dampf leicht entzündbar.

H242 Erwärmung kann Brand verursachen.

H302 Gesundheitsschädlich bei Verschlucken.

H311 Giftig bei Hautkontakt.

H312 Gesundheitsschädlich bei Hautkontakt.

H314 Verursacht schwere Verätzungen der Haut und schwere Augenschäden.

H315 Verursacht Hautreizungen.

H317 Kann allergische Hautreaktionen verursachen.

H318 Verursacht schwere Augenschäden.

H319 Verursacht schwere Augenreizung.

H330 Lebensgefahr bei Einatmen.

H332 Gesundheitsschädlich bei Einatmen.

H335 Kann die Atemwege reizen.

H351 Kann vermutlich Krebs erzeugen.

H373 Kann die Organe schädigen bei längerer oder wiederholter Exposition.

H400 Sehr giftig für Wasserorganismen.

H410 Sehr giftig für Wasserorganismen mit langfristiger Wirkung.

H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.

H412 Schädlich für Wasserorganismen, mit langfristiger Wirkung.

ED: Stoff besitzt Endokrin-aktive Eigenschaften (Endokrin Disruptor-Eigenschaften)

EU OEL: Stoff mit einem EU-Arbeitsplatzgrenzwert

EU EXPLD 1: Stoff ist im Anhang I der Verordnung (EU) 2019/1148 genannt EU EXPLD 2 Stoff ist im Anhang II der Verordnung (EU) 2019/1148 genannt

SVHC: besonders besorgnis-erregende Substanz (SVHC – substance of very high concern) der Reach

Kanditaten-Liste

PBT: Stoff, der die persistenten, bioakkumulativen und toxischen Kriterien erfüllt

PBT/vPvB: Stoff, der die persistenten, bioakkumulativen und toxischen, sowie die sehr persistenten und

sehr bioakkumulativen Kriterien erfüllt

vPvB: Stoff, der die sehr persistenten und sehr bioakkumulativen Kriterien erfüllt

Weitere Informationen:

Dieses Sicherheitsdatenblatt wurde erstellt für den Verkauf von Henkel an Kunden, die bei Henkel einkaufen. Es basiert auf der Verordnung (EG) Nr. 1907/2006 und enthält nur Informationen in Übereinstimmung mit den geltenden Vorschriften der Europäischen Union. In diesem Zusammenhang wird keinerlei Erklärung, Gewährleistung oder Zusicherung hinsichtlich der Einhaltung von Gesetzen oder Vorschriften anderer Gerichtsbarkeiten oder Regionen außerhalb der Europäischen Union abgegeben.

Wenn Sie in ein anderes Gebiet als die Europäische Union exportieren, konsultieren Sie bitte das entsprechende Sicherheitsdatenblatt des betreffenden Landes oder der Region, um eine Einhaltung sicherzustellen, oder kontaktieren Sie die Henkel Abteilung: Product Safety and Regulatory Affairs (ua-productsafety.de@henkel.com) um den Export in andere Länder oder Regionen als die Europäische Union vor eine Ausfuhr abzuklären.

Die Angaben stützen sich auf den heutigen Stand unserer Kenntnisse und beziehen sich auf das Produkt im Anlieferungszustand. Sie sollen unsere Produkte im Hinblick auf Sicherheitserfordernisse beschreiben und haben somit nicht die Bedeutung, bestimmte Eigenschaften zuzusichern.

Sehr geehrter Kunde,

Henkel engagiert sich dafür eine nachhaltige Zukunft zu schaffen, indem wir verschiedene Möglichkeiten entlang der gesamten Wertschöpfungskette fördern. Wenn Sie sich an diesem Vorhaben beteiligen möchten, indem Sie von der Papierzu unserer elektronischen SDB-Übermittlung wechseln, kontaktieren Sie bitte Ihren lokalen Ansprechpartner im Kundendienst. Wir empfehlen dabei als Adressaten eine nicht-personenbezogene E-Mail Adresse wie z.B. SDS@Ihre_Firma.com.

Relevante Änderungen werden in diesem Sicherheitsdatenblatt mit senkrechten Linien am linken Rand gezeigt. Entsprechender Text erscheint in einer anderen Farbe und in geschatteten Feldern.