

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-01/0013 of 29 November 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Wegde Anchor B

Mechanical fastener for use in concrete

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

16 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-01/0013 issued on 30 January 2015

European Technical Assessment ETA-01/0013

Page 2 of 16 | 29 November 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z72939.18 8.06.01-791/18

European Technical Assessment ETA-01/0013

Page 3 of 16 | 29 November 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Wedge Anchor B of sizes M6, M8, M10, M12, M16 and M20 is a fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed in an drilled hole and anchored by torque-controlled expansion.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 and C2			
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C3			
Displacements (static and quasi-static loading)	See Annex C4			
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed			

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

Z72939.18 8.06.01-791/18

European Technical Assessment ETA-01/0013

Page 4 of 16 | 29 November 2018

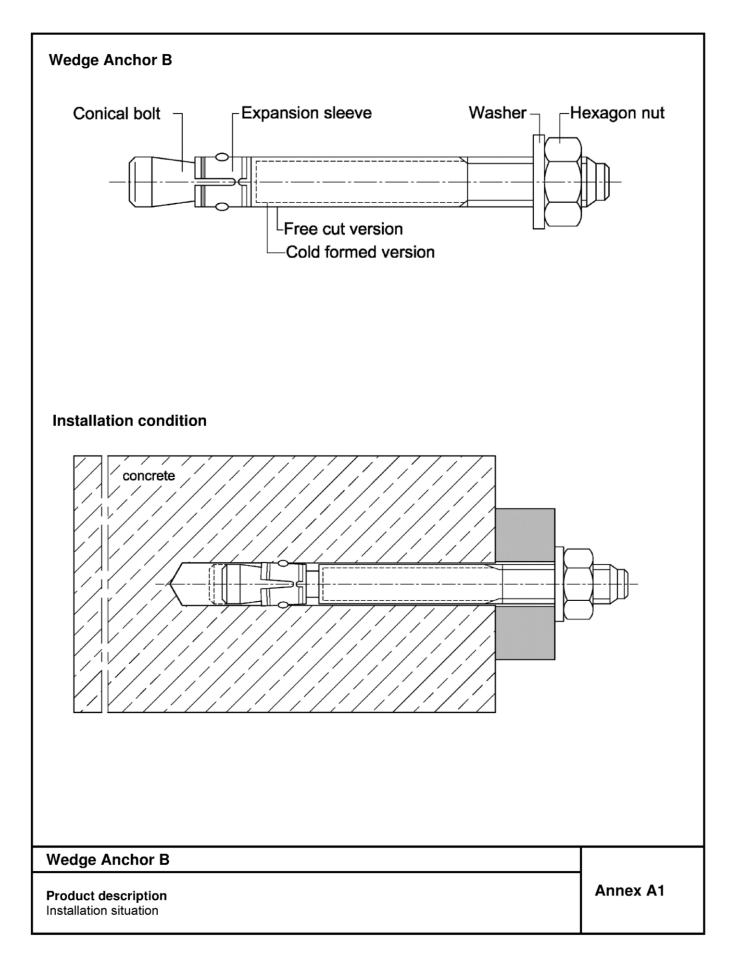
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 29 November 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Lange

Z72939.18 8.06.01-791/18

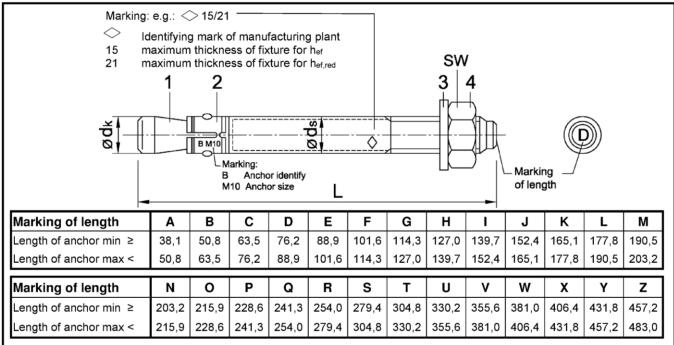


Table A1: Dimensions, steel zinc plated

Dimensions in mm

			Anchor	Wrench		
Anchor size	Ø d _k	Ø d₅	Standard anchorage depth	Reduced anchorage depth	size [SW]	
Steel electroplat	ed, hot-dip g	alvanized and sh	erardized			
M6	6	6 / 5,3 ¹⁾	t _{fix} + 57,4	t _{fix hef,red} + 47,4	10	
M8	8	8 / 7,1 ¹⁾	t _{fix} + 66,4	t _{fix hef,red} + 57,4	13	
M10	10	10 / 8,9 ¹⁾	t _{fix} + 74,0	t _{fix hef,red} + 68,0	17	
M12	12	12 / 10,7 ¹⁾	t _{fix} + 97,3	t _{fix hef,red} + 82,3	19	
M16	16	16 / 14,5 ¹⁾	t _{fix} + 121,0	t _{fix hef,red} + 103,0	24	
M20	20	20 / 18,2 ¹⁾	t _{fix} + 142,7	t _{fix hef,red} + 120,7	30	

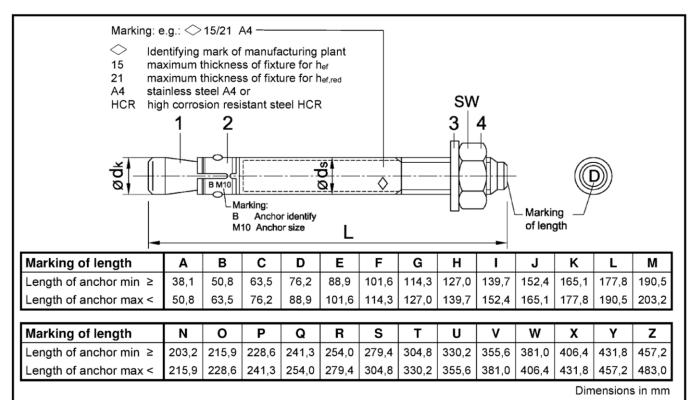

¹⁾ cold formed version

Table A2: Materials, steel zinc plated

			Material							
Part	Designation	Steel, electroplated ≥ 5 μm acc. to EN ISO 4042:1999	Steel, hot-dip galvanized ≥ 40 µm, acc. to EN ISO 1461:2009	Steel, sherardized \geq 45 μ m, acc. to EN ISO 17668:2016						
1	Conical bolt	Cold formed or machined steel								
2	Expansion sleeve	Steel, acc. to EN 10088:200	Steel, acc. to EN 10088:2005, material No. 1.4301 or 1.4303							
3	Washer	Steel, zinc plated								
4	Hexagon nut	Property class 8 acc. to EN	roperty class 8 acc. to EN ISO 898-2:2012							

Wedge Anchor B	
Product description Anchor dimensions, marking and materials, steel zinc plated	Annex A2

Table A3: Dimensions, stainless steel A4/HCR

Anchor length L Wrench **Anchor size** $\emptyset d_k$ $Ød_s$ size Standard anchorage Reduced anchorage [SW] depth depth Stainless steel A4 / HCR $t_{\text{fix hef,red}} + 47,4$ M6 6 $6/5.3^{1)}$ $t_{fix} + 57.4$ 10 M8 8 $8/7,1^{1}$ $t_{fix} + 66,4$ $t_{fix hef,red} + 57,4$ 13 M10 10 $10 / 8,9^{1}$ $t_{fix} + 74,0$ $t_{\text{fix hef,red}} + 68,0$ 17 12 / 10,7 1) M12 12 $t_{fix} + 96,5$ $t_{fix hef,red} + 81,5$ 19 16 / 14,5 ¹⁾ M16 16 $t_{fix} + 117.8$ $t_{fix hef,red} + 101,8$ 24 M20 19.7 19,7 / 18,2 ¹⁾ $t_{fix} + 142,7$ $t_{\text{fix hef,red}} + 120,7$ 30

Table A4: Materials, stainless steel A4/HCR

Part	Designation	High corrosion resistant steel HCR					
1	Conical bolt	Stainless steel 1.4401, 1.4404, 1.4571, 1.4578, 1.4362, EN 10088:2014, coated	High corrosion resistant steel 1.4529, 1.4565, EN 10088:2014, coated				
2	Expansion sleeve	Stainless steel 1.4401, 1.4404, 1.4571, 1.43	4362, EN 10088:2014				
3	Washer	Vasher Stainless steel, EN 10088:2014 High corrosion resistant steel 1.4529, 1.4565, EN 10088:2014					
4	EN ISO 3506-2:2009, Hexagon nut stainless steel A4-70,		EN ISO 3506-2:2009, strength class 70, high corrosion resistant steel 1.4529, 1.4565, EN 10088:2014, coated				

Wedge Anchor B

Product description

Anchor dimensions, marking and materials, stainless steel A4/HCR

Annex A3

¹⁾ cold formed version

English translation prepared by DIBt

Specifications of intended use

We	dge Anchor B		М6	М8	M10	M12	M16	M20
		electroplated	✓	✓	✓	✓	✓	✓
als	Steel zinc plated	hot-dip galvanized	•	✓	✓	✓	✓	✓
Materials		sherardized	✓	✓	✓	✓	✓	✓
■	Stainless steel	A4	✓	✓	✓	✓	✓	✓
	High corrosion res	istant steel HCR	✓	✓	✓	✓	✓	✓
Sta	tatic or quasi-static action		or quasi-static action ✓					
Red	educed anchorage depth		✓					
Uncracked concrete				•	/			

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

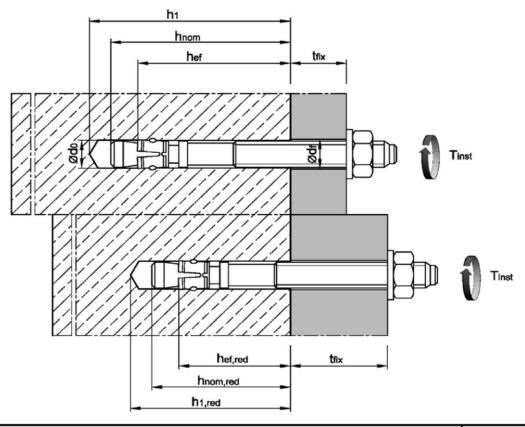
Structures subject to dry internal conditions	zinc plated steel, stainless steel A4, high corrosion resistant steel HCR
Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist	stainless steel A4, high corrosion resistant steel HCR
Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist 1)	high corrosion resistant steel HCR

Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 or TR 055

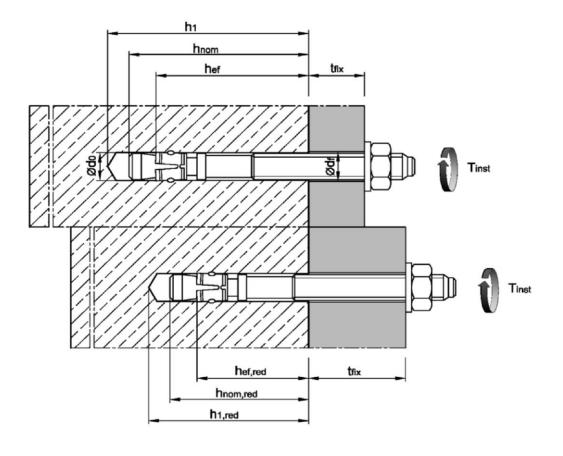
Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured, if
 the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in
 accordance with Annex A1 and A2 and the hexagon nut is placed at the end of the conical bolt as delivered
 by the manufacturer.

Wedge Anchor B	
Intended use Specifications	Annex B1

Table B1: Installation parameters, steel zinc plated

Anchor size			М6	M8	M10	M12	M16	M20
Nominal drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
Installation torque (electroplated)	T _{inst} =	[Nm]	8	15	30	50	100	200
Installation torque (hot-dip galvanized)	T _{inst} =	[Nm]	1	15	30	40	90	120
Installation torque (sherardized)	T _{inst} =	[Nm]	5	15	30	40	90	120
Diameter of clearance hole in the fixture	$d_f \! \leq \!$	[mm]	7	9	12	14	18	22
Standard anchorage depth								
Depth of drill hole	$h_1 \geq$	[mm]	55	65	70	90	110	130
Embedment depth	$h_{\text{nom}} \geq$	[mm]	49	56	62	82	102	121
Effective anchorage depth	$h_{\text{ef}} \geq$	[mm]	40	44	48	65	82	100
Reduced anchorage depth								
Depth of drill hole	$h_{1,\text{red}} \geq$	[mm]	45	55	65	75	95	110
Embedment depth	$h_{\text{nom,red}} \geq$	[mm]	39	47	56	67	84	99
Effective anchorage depth	$h_{\text{ef,red}} \geq$	[mm]	30	35	42	50	64	78



Wedge Anchor B	
Intended use Installation data, steel zinc plated	Annex B2

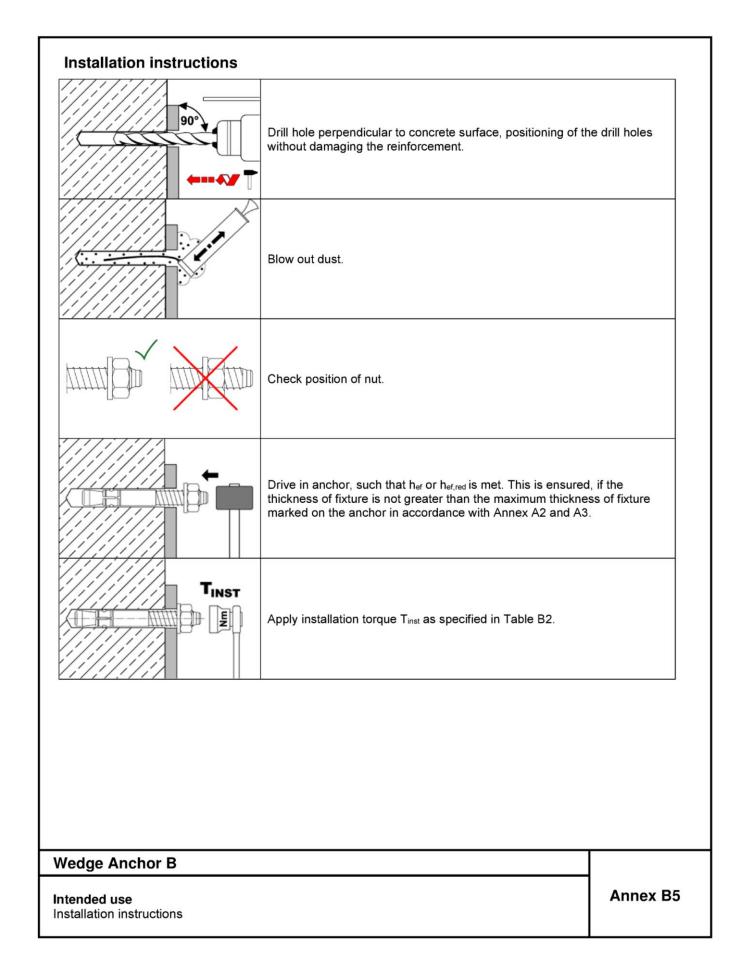
Table B2: Installation parameters, stainless steel A4 / HCR

Anchor size			М6	М8	M10	M12	M16	M20
Nominal drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
Installation torque	T _{inst} =	[Nm]	6	15	25	50	100	160
Diameter of clearance hole in the fixture	$d_f \leq$	[mm]	7	9	12	14	18	22
Standard anchorage depth								
Depth of drill hole	$h_1\geq$	[mm]	55	65	70	90	110	130
Embedment depth	$h_{\text{nom}} \geq$	[mm]	49	56	62	81	99	121
Effective anchorage depth	$h_{\text{ef}} \geq$	[mm]	40	44	48	65	80	100
Reduced anchorage depth								
Depth of drill hole	$h_{1,\text{red}}\!\geq\!$	[mm]	45	55	65	75	95	110
Embedment depth	$h_{\text{nom,red}}\!\geq\!$	[mm]	39	47	56	66	83	99
Effective anchorage depth	$h_{\text{ef,red}}\!\geq\!$	[mm]	30	35	42	50	64	78

Wedge Anchor B	
Intended use Installation data, stainless steel A4/HCR	Annex B3

Table B3: Minimum spacings and edge distances, steel zinc plated

Anchor size			М6	М8	M10	M12	M16	M20
Standard anchorage depth hef								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	170	200
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125
Reduced anchorage depth hef,red								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	40	55	100	100	140
Minimum edge distance	C _{min}	[mm]	40	45	65	100	100	140


Table B4: Minimum spacings and edge distances, stainless steel A4 / HCR

Anchor size			М6	М8	M10	M12	M16	M20
Standard anchorage depth hef								
Minimum member thickness	h_{min}	[mm]	100	100	100	130	160	200
Minimum spacing —	Smin	[mm]	35	35	45	60	80	100
	for c ≥	[mm]	40	65	70	100	120	150
Minimum adaa diatanaa	C _{min}	[mm]	35	45	55	70	80	100
Minimum edge distance	$ \text{for s} \geq$	[mm]	60	110	80	100	140	180
Reduced anchorage depth hef,red								
Minimum member thickness	h_{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	60	55	100	110	140
Minimum edge distance	C _{min}	[mm]	40	60	65	100	110	140

Intermediate values by linear interpolation.

Wedge Anchor B	
Intended use Minimum spacings and edge distances	Annex B4

Table C1: Characteristic values for tension loads, steel zinc plate	Table C1:	Characteristic values	for tension	loads, ste	el zinc plate
---	-----------	-----------------------	-------------	------------	---------------

Anchor size			М6	М8	M10	M12	M16	M20
Installation factor	γinst	[-]			1	,0		
Steel failure								
Characteristic resistance	$N_{Rk,s}$	[kN]	8,7	15,3	26	35	65	107
Partial factor	γMs	[-]		1	,5		1	,6
Pull-out								
Standard anchorage depth hef								
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	9	12	16	1)	1)	1)
Reduced anchorage depth hef,red								
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	6 ²⁾	1) 2)	1)	1)	1)	1)
Increasing factor for N _{Rk,p}	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$					
Splitting								
Characteristic resistance in uncracked concrete C20/25	N^0 Rk,sp	[kN]		r	min [N _R	k,p; N ⁰ Rk,	c]	
Standard anchorage depth hef								
Spacing	S cr,sp	[mm]	160	220	240	330	410	500
Edge distance	C _{cr,sp}	[mm]	80	110	120	165	205	250
Reduced anchorage depth hef,red								
Spacing	S cr,sp	[mm]	180	210	230	240	320	400
Edge distance	C _{cr,sp}	[mm]	90	105	115	120	160	200
Concrete cone failure								
Standard anchorage depth hef								
Effective anchorage depth	$h_{\text{ef}} \geq$	[mm]	40	44	48	65	82	100
Spacing	S _{cr,N}	[mm]			3	h _{ef}		
Edge distance	Ccr,N	[mm]			1,5	h _{ef}		
Reduced anchorage depth hef,red								
Effective anchorage depth	$h_{\text{ef,red}} \geq$	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Spacing	S _{cr,N}	[mm]			3 h	ef,red		
Edge distance	C _{cr,N}	[mm]			1,5	n _{ef,red}		
Factor for k₁	k _{ucr,N}	[-]			1	1,0		

¹⁾ Pullout failure is not decisive

Wedge Anchor B	
Performance Characteristic values for tension loads, steel zinc plated	Annex C1

²⁾ Use restricted to anchorages of indeterminate structural components

Performance

Anchor size			М6	М8	M10	M12	M16	M20
Installation factor	γinst	[-]			1	,0		
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	10	18	30	44	88	134
Partial factor			10	10	1,50			1,68
	γMs	[-]			1,50			1,00
Pull-out								
Standard anchorage depth hef								
Characteristic resistance in	N _{Rk,p}	[kN]	7,5	12	16	25	1)	1)
uncracked concrete C20/25	INRK,p	[KIN]	7,5	12	10	25	,	
Reduced anchorage depth hef,red								
Characteristic resistance in	$N_{Rk,p}$	[kN]	6 ²⁾	9 ²⁾	12	1)	1)	1)
uncracked concrete C20/25	TTKK,p	[KIV]			12			
Splitting								
Standard anchorage depth hef								
The higher one of the decisive resista	nces of	Case 1	and Case	2 is applic	able.			
Case 1								
Characteristic resistance in	N ⁰ Rk,sp	[FVI]	6	9	12	20	30	40
uncracked concrete C20/25	IN Rk,sp	[kN]	0	9			30	40
Spacing	S _{cr,sp}	[mm]				h _{ef}		
Edge distance	C _{cr,sp}	[mm]			1,5	h _{ef}		
Case 2								
Characteristic resistance in	$N^0_{Rk,sp}$	[kN]	7,5	12	16	25	1)	1)
uncracked concrete C20/25				220	240	240	410	F60
Spacing Edge distance	S _{cr,sp}	[mm] [mm]	160 80	110	120	340 170	410 205	560 280
	C cr,sp	[[[[[[[]]]]]	60	110	120	170	205	200
Reduced anchorage depth hef,red Characteristic resistance in								
uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	6 ²⁾	9 2)	12	1)	1)	1)
Spacing	S cr,sp	[mm]	180	210	230	300	320	400
Edge distance	C _{cr,sp}	[mm]	90	105	115	150	160	200
Euge distance	Oci,sp	1	00	100	110	0,5	100	200
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψc	[-]			$(\frac{f_{ck}}{f_{ck}})$: \		
					(20) /		
Concrete cone failure								
Standard anchorage depth hef								
Effective anchorage depth	h _{ef}		40	44	48	65	80	100
Spacing	S _{cr,N}	[mm]				h _{ef}		
Edge distance	Ccr,N	[mm]			1,5	h _{ef}		
Reduced anchorage depth hef,red								
Effective anchorage depth	$h_{\text{ef,red}}$	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Spacing	Scr,N	[mm]				h _{ef}		
Edge distance	C _{cr,N}	[mm]				h _{ef}		
Factor for k₁	$k_{ucr,N}$	[-]			1	1,0		
Pullout failure is not decisive.								

Z76118.18 8.06.01-791/18

Characteristic values for tension loads, stainless steel A4 / HCR $\,$

Annex C2

Table C3: Characteristic values for shear loads, steel zinc plated

Anchor size			М6	M8	M10	M12	M16	M20
Installation factor	γinst	[-]				1,0		
Steel failure without lever arm								
Characteristic resistance	$V^0_{Rk.s}$	[kN]	5	11	17	25	44	69
Ductility factor	k ₇	[-]				1,0		
Steel failure with lever arm								
Characteristic bending resistance	M ⁰ Rk.s	[Nm]	9	23	45	78	186	363
Partial factor for V ⁰ _{Rk,s} and M ⁰ _{Rk,s}	γMs	[-]		1	,25	1,33		
Concrete pry-out failure								
Factor for h ef	k 8	[-]	1,0	1,0	1,0	2,0	2,0	2,0
Factor for h _{ef,red}	k 8	[-]	1,0 ¹⁾	1,0 ¹⁾	1,0	1,0	2,0	2,0
Concrete edge failure								
Effective length of anchor in shear loading for h ef	lf	[mm]	40	44	48	65	82	100
Effective length of anchor in shear loading for $\mathbf{h}_{\text{ef,red}}$	lf	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78
Outside diameter of anchor	d_{nom}	[mm]	6	8	10	12	16	20

¹⁾ Use restricted to anchorages of indeterminate structural components

Table C4: Characteristic values for shear loads, stainless steel A4/HCR

Anchor Size			М6	М8	M10	M12	M16	M20
Installation factor	γinst	[-]			1	,0		
Steel failure without lever arm								
Characteristic resistance	V^0 Rk,s	[kN]	7	12	19	27	50	86
Ductility factor	k ₇	[-]			1	,0		
Steel failure with lever arm								
Characteristic bending resistance	M^0 _{Rk,s}	[Nm]	10	24	49	85	199	454
Partial factor for V ⁰ _{Rk,s} and M ⁰ _{Rk,s}	γMs	[-]			1,25			1,4
Concrete pry-out failure								
Factor for h ef	k ₈	[-]	1,0	1,0	1,0	2,0	2,0	2,0
Factor for h _{ef,red}	k ₈	[-]	1,0 ¹⁾	1,0 ¹⁾	1,0	1,0	2,0	2,0
Concrete edge failure								
Effective length of anchor in shear loading with h ef	I _f	[mm]	40	44	48	65	80	100
Effective length of anchor in shear loading with h ef,red	lf	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78
Outside diameter of anchor	d_{nom}	[mm]	6	8	10	12	16	20

¹⁾ Use restricted to anchorages of indeterminate structural components

Wedge Anchor B	
Performance Characteristic values for shear loads	Annex C3

Table C5: Displacements under tension loads, steel zinc plated

Anchor size			М6	M8	M10	M12	M16	M20		
Standard anchorage depth										
Tension load	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8		
Dianlacement	δηο	[mm]	0,4	0,5						
Displacement	δ _{N∞}	[mm]	0,7	2,3						
Reduced anchorage depth										
Tension load	N	[kN]	2,9	5,0	6,5	8,5	12,3	16,6		
Displacement	δηο	[mm]	0,3	0,4						
Displacement	δn∞	[mm]	0,6			1,8				

Table C6: Displacements under tension loads, stainless steel A4/HCR

Anchor size			М6	М8	M10	M12	M16	M20
Standard anchorage depth								
Tension load	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Displacement	δηο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
	δn∞	[mm]			1,8			4,2
Reduced anchorage depth								
Tension load	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Displacement	δηο	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
	δ _{N∞}	[mm]			1,3			2,9

Table C7: Displacements under shear loads, steel zinc plated

Anchor size			М6	М8	M10	M12	M16	M20
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δ_{V0}	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	δν∞	[mm]	2,4	2,2	2,4	3,9	4,6	6,6

Table C8: Displacements under shear loads, stainless steel A4/HCR

Anchor Size			М6	М8	M10	M12	M16	M20
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Displacement	δ_{V0}	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	$\delta_{V^{\infty}}$	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

Wedge Anchor B	
Performance Displacements	Annex C4